博客
关于我
推荐适合学生党做深度学习使用GPU的平台(薅羊毛)
阅读量:215 次
发布时间:2019-02-28

本文共 330 字,大约阅读时间需要 1 分钟。

在实验室里一块GPU都没有,想要做深度学习的话,可能会觉得有点难度。对于学生党来说,选择一个适合的平台尤为重要。MistGPU是一个不错的选择,操作简便,上传速度快,特别适合需要快速体验深度学习的人。对于文件大小1GB以内的上传,完全是免费的,方便又实用。如果你需要更高的使用频率或者更大的资源支持,MistGPU也提供了按月付费的选项,随时可以根据需求调整。目前我已经在使用,体验感不错。刚注册还能享受免费试用,邀请好友上线的用户都能获得8元的礼包,非常值得推荐。毕竟,深度学习从0到1,选择一个合适的平台会让学习路上少很多盲点。

截图显示我的主机配置,虽然不是最高端的配置,但对于日常的深度学习任务已经足够用了。如果你也想试试深度学习,不妨一起来薅羊毛吧!

转载地址:http://vogs.baihongyu.com/

你可能感兴趣的文章
NIS服务器的配置过程
查看>>
Nitrux 3.8 发布!性能全面提升,带来非凡体验
查看>>
NiuShop开源商城系统 SQL注入漏洞复现
查看>>
NI笔试——大数加法
查看>>
NLog 自定义字段 写入 oracle
查看>>
NLog类库使用探索——详解配置
查看>>
NLP 基于kashgari和BERT实现中文命名实体识别(NER)
查看>>
NLP 模型中的偏差和公平性检测
查看>>
Vue3.0 性能提升主要是通过哪几方面体现的?
查看>>
NLP 项目:维基百科文章爬虫和分类【01】 - 语料库阅读器
查看>>
NLP_什么是统计语言模型_条件概率的链式法则_n元统计语言模型_马尔科夫链_数据稀疏(出现了词库中没有的词)_统计语言模型的平滑策略---人工智能工作笔记0035
查看>>
NLP三大特征抽取器:CNN、RNN与Transformer全面解析
查看>>
NLP学习笔记:使用 Python 进行NLTK
查看>>
NLP度量指标BELU真的完美么?
查看>>
NLP的不同研究领域和最新发展的概述
查看>>
NLP的神经网络训练的新模式
查看>>
NLP采用Bert进行简单文本情感分类
查看>>
NLP问答系统:使用 Deepset SQUAD 和 SQuAD v2 度量评估
查看>>
NLP项目:维基百科文章爬虫和分类【02】 - 语料库转换管道
查看>>
NLP:使用 SciKit Learn 的文本矢量化方法
查看>>